Complex Numbers

Key Points:

- Complex number is the sum of the real number and imaginary number; the standard form is a + bi where a is the real part and b is the imaginary part.
- The imaginary number : $i = \sqrt{-1}$
- The square root of any negative number can be written as a multiple of i.

$$\sqrt{-9} = 3i$$
$$-\sqrt{-64} = -8i$$

- Complex numbers can be added and subtracted by combining the real parts and combining the imaginary parts.
- Complex numbers can be multiplied and divided.
 - o To multiply complex numbers, distribute just as with polynomials.
 - To divide complex numbers, multiply both numerator and denominator by the complex conjugate of the denominator to eliminate the complex number from the denominator.
- The powers of are cyclic, repeating every fourth one.

Complex Numbers Video

- Expressing Roots of Negative Numbers using i
- Adding Subtracting Complex Numbers
- Multiplying Complex Numbers
- **Dividing Complex Numbers**
- Simplifying Powers of i

Practice Exercises

Follow the directions for each exercise below:

- 1. Name the horizontal component and the vertical component: 4 3i
- 2. Name the horizontal component and the vertical component: -2 i
- 3. Simplify the expression: (9 i) (4 7i)
- 4. Simplify the expression: (2+3i)-(-5-8i)
- 5. Simplify the expression: $2\sqrt{-75} + 3\sqrt{25}$
- 6. Simplify the expression: $\sqrt{-16} + 4\sqrt{-9}$
- 7. Simplify the expression: -6i(i-5)
- 8. Simplify the expression: $(3 5i)^2$
- 9. Simplify the expression: $\sqrt{-4} * \sqrt{-12}$
- 10. Simplify the expression: $\sqrt{-2}(\sqrt{-8} \sqrt{5})$
- 11. Simplify the expression: $\frac{2}{5-3i}$
- 12. Simplify the expression: $\frac{3+7i}{i}$

Answers:

1. Horizontal: 4

Vertical: -3

2. Horizontal: -2

Vertical: -1

3. 5 + 6i

4. 7 + 11i

5. $15 + 10\sqrt{3}i$

6. 16*i*

7. 6 + 30i

8. -16 - 30i

9. $-4\sqrt{3}$

10. $-4 - \sqrt{10}i$

11. $\frac{5}{17} + \frac{3}{17}i$

12. 7 - 3i